A Professional Approach to the Study of the Earth’s Interior


GeoGrid has successful partnerships with such companies as Gazprom Geologorazvelka, Total Exploration Timan-Pechora, Zarubezhneft, Gazprom EP International B.V., Vietgazprom JOC, Polar Trade & Research Associates Limited, Marine Geophysical Services Limited, Gazpromviet, ERIELL Oil Services Group, Kyrgyzgeofizika, INGEOSERVICE, LUKOIL Engineering and some other companies. Many projects have been implemented both in the Russia Federation and abroad.

Foreign projects

Outside the Russian Federation, GeoGrid Center specialists have implemented a number of large-scale projects. The most significant are:

Offshore Vietnam (South China Sea)

Seven projects were implemented there during 2012-2017. Today, GeoGrid continues working in license areas that belong to the Joint Operating Company Vietgazprom (Petrovietnam and Gazprom PJSC group) offshore the Socialist Republic of Vietnam. GeoGrid began its activity in Vietnam with a small-scale project relating to geological justification of an exploratory well location in one of the Vietgazprom license blocks. Full analysis of G&G data received from the client helped GeoGrid specialists to deliver recommendations for the location of the exploratory well. Then they defended the results of their work.

Following the completion of drilling operations, GeoGrid jointly with Vietnam Oil Institute won a tender for the integrated reinterpretation of 3D seismic data and drilling results in the aims of updating the G&G model and performing a quick-look estimate of the reserves within License Block 112 offshore Vietnam. The consortium also won a tender for the estimation of gas and condensate reserves of the Bao Vang field (in License Block 112 due to its extension). The outputs were submitted to Vietnam’s Ministry of Natural Resources and to Gazprom Gas Industry Commission for Field Development and Subsurface Use for consideration.

Parallel prospecting and exploration activities were carried out in other license blocks offshore Vietnam. GeoGrid specialists generated 3D geological models for Blocks 129-131 offshore Vietnam; they analyzed the capacity of the traps and the degree of their saturation with hydrocarbons using the basin modeling method. The Center also identified prospects and justified well locations based on special 2D seismic data reprocessing and interpretation of the data acquired within the confines of the prospects. Basing modeling was implemented using Russian software products. As a result two prospecting wells were drilled on two structures which produced natural gas.

There are still offshore operations in Vietnam today. GeoGrid also implemented a major project for processing and analysis of data acquired when drilling and testing two wells; reinterpretation of 2D seismic data (for two license blocks); and a quick-look estimate of PRMS reserves. The output was used to deliver recommendations for a partial special reprocessing of 2D seismic data for four license blocks, in order to generate a more reliable geological model and eliminate new well drilling risks. The works for reinterpretation of reprocessed seismic data and building basin models using the improved structural model for the entire area, have been completed.


In 2015-2016, GeoGrid was involved in assessing oil-and-gas bearing capacity of the onshore and offshore sedimentary basins of Argentina basing on regional seismic surveys and basin modeling.

The survey focused on sedimentary basins: Cretaceous, Austral and San Jorge (onshore), Malvinas (offshore), as well as areas in the country’s central and outer continental shelf.

The main aim was to quantify the petroleum potential of the basins and identify local targets that could contain oil and gas accumulations. To this end, GeoGrid used both conventional onshore and offshore oil-and-gas-bearing capacity assessment techniques and advanced 1D, 2D and 3D petroleum system modeling techniques.

The information used as input data was a large volume of seismic data related to the Argentina offshore areas acquired by GeoGrid specialists on a visit to ION (Houston, Texas), as well as public information, along with data from the Argentinian geological central and regional funds. The storage of Argentinian G&G data for each province comes under the jurisdiction of the federal government and Secretariats of Energy of each individual province. In July 2015, in order to obtain the data, a group of GeoGrid employees held several meetings with the government and petroleum business authorities such as: Hydrocarbon Department of the Energy Secretariat of Energy in the Ministry of Planning; ENAR S.A, the company that controls the Argentinian data bank; regional governments and ministries, geological funds located in Buenos Aires, Ushuaia (Tierra del Fuego province), Rio Gallegos (Santa Cruz province), Comodoro Rivadavia (Chubut province), and Salta (Salta province).

As a result, GeoGrid collected data and carried out a comprehensive analysis of the G&G and geochemical information submitted or published relating to the sedimentary basins of interest. GeoGrid reinterpreted seismic and well data, and built structural models of the sedimentary basins in question. The structural models were used, to model petroleum systems. The burial history restoration, thermal history and petroleum generation, migration and accumulation modeling were carried out for each basin.

Petroleum systems modeling was performed on domestic software package “Sedim”.

It was the first time that 3D basin modeling for the territory under survey had been performed.

The results were used to analyze the current state of Argentinian sedimentary basins petroleum systems evolution; to quantify the petroleum potential of the basins, identify several prospects for which geological risks were assessed, along with economic efficiency of carrying out exploration.


GeoGrid joined the projects in Bolivia in 2016 as a partner of Gazprom International at the stage of assessing the natural resource potential of several geological areas under different conditions. The mission was to assess the potential and identify prospects in such basins as Chako, Beni, Madre de Dios, Chapare, Altiplano, and in the adjacent folded areas, namely, Subandino Sur and Subandino Norte. For each of the basins we gathered and integrated G&G data, built structural models, performed basin modeling, identified prospects, assessed the resources and economic efficiency of development.

To this end, we used a great amount of archival data from the funds of YPFB, Bolivia’s state-owned oil-and-gas company. As a result of the concerted actions of GeoGrid and YPFB’s data processing center in Santa Cruz, all the archival and current G&G data available in the fund was processed.

In this case, the study area had a unique geological structure, which was extremely complex for modeling, - not only a sedimentary basin, but also a fold-and-thrust structure with several deformation stages. Such a structure required special approaches to its investigation. In particular, the building of a 3D structural model required the development of a reference network of geological section. This was achieved by GeoGrid specialists in close collaboration with the leading structural geologists of Moscow State University Geological Faculty.

We used Move3D software offered by Midland Valley, the leading producer of this type of software to reproduce the fold-thrust structure in 2D and 3D models. The results of structural restorations performed by GeoGrid people were praised both by Midland Valley representatives and Bolivian structural and petroleum geology specialists. The results of structural modeling served as a basis to model the petroleum systems of the region and assess the resources of the local prospects. Then we restored the burial history, the structural evolution, built a 3D model of sedimentary cover heating, taking into account well-by-well calibration. The model served as the basis for modeling petroleum generation, migration and accumulation.

The basin modeling results were used to assess the present-day state of the petroleum systems for such regions as Chako, Chapare, Subandino Sur, Subandino Norte, Madre de Dios, Beni and Altipano, quantify the oil and gas bearing potential of these regions, and localize the prospects. We also assessed geological risks and the economic efficiency of starting operations there.

In addition to the general assessment of the five sedimentary basins’ potential, we performed a more detailed investigation of individual license areas by building a detailed structural model substantiated by the balancing and the reconstruction of deformation history; we also assessed petroleum resources in the licenses and the сoefficient of geological success. The petroleum systems were fully modeled using Russian software “Sedim”.

This was the first time that 3D basin modeling for the entire territory of Bolivia, as well as construction of joint 3D structural models of the Subandino Sur and Subandino Norte fold-thrust areas had ever been carried out.

Kyrgyzstan (marginal part of the Fergana depression)

In 2015-2016, GeoGrid undertook here a project  which was unusual for a service company (at least in term of the content). The project required the performance of CDP-2D seismic acquisitions (swath line), and process and interpret data acquired in the Kugart and Eastern Maili-Suu IV areas. Both are located in the north-eastern part of the Fergana depression of the Kyrgyz Republic.

The work was performed pursuant to an Agreement on the General Principles of Exploration in the Petroleum Prospects in the Kyrgyz Republic signed by the government of Kyrgyzstan and Gazprom PJSC, in the aims of improving the exploration efficiency in the Gazprom license areas in the country.

Kyrgyzgeofizika, JSC invited GeoGrid to participate. The mission involved seismic acquisition under harsh climatic conditions in the mountains, followed by processing and interpretation.

GeoGrid employed a Chinese company BGP Inc, (part of CNPC) as a local subcontractor who possessed all the required equipment and technology to perform seismic acquisition.

Within the shortest time possible, the people and technology were mobilized and GeoGrid was able to perform supervising functions via its permanent presence on the site. The seismic acquisition was successfully completed and GeoGrid began the processing and interpretation of the received seismic data.

In order to obtain an insight into the geological structure of the Kugart area and the Eastern Maili-Su IV area , GeoGrid processed and interpreted over 500 linear kilometers of CDP-2D seismic data (swath line).

The comprehensive geophysical data interpretation helped in the interpretation of the main reflectors; generation of structural maps, identify targets and prospects that could contain hydrocarbon accumulations; estimation of D0 resources, and preparation of respective structure passports.

The final results were presented at a meeting of the section for exploration, hydrocarbon reserves, and hydro-mineral and other natural resources of the Gas Industry Commission for Field Development and Subsurface use of Gazprom.

Indian Ocean shelf

GeoGrid specialists implemented a numerical 3D basin modeling project to assess the sedimentary environment, generation, migration and fluid saturation in the fields and structures in the Rovuma and Mozambique basins.

The study area is located offshore East Africa and in the adjacent deep-water part of the Indian Ocean. The modeled area partly spreads into the Tanzania and Mozambique territorial waters.

In the process of our activity we undertook a comprehensive analysis of data acquired by our predecessors and gathered published geological, geophysical and geochemical information on the study area and adjacent regions. We analyzed current conceptions concerning the geology and hydrocarbon systems of the Rovuma and Mozambique basins, and we built a sequence-stratigraphic model of the sedimentary mantle structure.

The report contains the results of 3D modeling of the sedimentary basin and petroleum system evolution history in the Mesozoic-Cenozoic period within the East African sedimentary basin. We made a forecast of distribution of reservoirs based on eight seismic lines and 2D sedimentary modeling and another forecast of traps filling on the basis of 3D numerical basin modeling. In addition, we analyzed the sensitivity of the sedimentary basin petroleum system model, assessed the geological risks and assessed the resources contained in the identified localized prospects. Furthermore, we prepared technical and economic proposals concerning Upper Jurassic, Mid-and-Upper Cretaceous and Paleocene targets.

It was the first time that 3D basin modeling and numerical sedimentary modeling had ever been performed in the study area. Moreover, all the computations were carried out using Russian Sedim and Mazay software.

The results of GG data interpretation and basin modeling helped identify eight local zones that can be considered as potential prospects containing exploration targets where a single system of product gathering, treatment, storage and export system can be built. Technical and economic proposals were developed for each of the targets.

In addition we assessed the economic viability of prospecting within the targets under survey. The findings were submitted to the client for use in exploration planning.

Eastern Mediterranean

For the Levantine basin in the Eastern section of the Mediterranean Sea, GeoGrid carried out digital 3D basin modeling to assess the conditions of generation, migration and fluid-saturation at discovered field and structures along with concomitant risks assessment.

GeoGrid used the client’s Levantine sedimentary basin structural model built on the basis of 2D seismic grid, published data and well data and carried out the following scope of work:

1.    Comprehensive analysis of the results acquired by the predecessor; aggregated published geological, geophysical and geochemical information about the study area and the adjoining areas.

2.    As part of basin modeling and hydrocarbon system modeling GeoGrid did the following:

  • Restored the burial history of the sedimentary basin through back-stripping with sediment compaction, paleobathimetry and erosion corrections;
  • Modeled the thermal regime evolution of the sedimentary cover and underlying crust and subcrustal lithosphere;
  • Reproduced the history of the maturation of organic matter in potential oil-and-gas source formations, and assessed the amount of petroleum generated;
  • Modeled a hydrocarbons migration and accumulation;
  • Assessed geological risks by the stochastic modeling method.

This allowed for six prospects to be identified and the following recommendations were made:

  • Reprocess and reinterpret 2D seismic data on the basis of available information;
  • Carry out 3D seismic exploration (if possible), if the 2D seismic data is insufficient;
  • Comprehensive interpretation of geophysical (gravity, electric and magnetic) and geochemical data;
  • Update G&G models of the study area.

The entire package of basin modeling computations was performed using the Russian Sedim software.

The experience of GeoGrid specialists in the construction supervision for well and oil field facilities comprises their work on the following projects:

Algeria (mainland, project management)

Acting as the client's representative with the following scope of work:

  • Drew up tender documentation; selected contractors for drilling and other services needed for the construction of six wells;
  • Inspected the rig prior to drilling;
  • Provided well construction engineering support;
  • Coordinated activities of drilling contractors and services companies; 
  • Carried out project financial monitoring on a daily basis.

Result: five vertical wells were drilled to discover commercial hydrocarbon reserves.

Bangladesh (mainland, supervising)

Acting as the client's representative with the following scope of work:

  • Analyzed technical documentation and information submitted by materials and equipment suppliers;
  • Analyzed G&G data to provide well construction recommendations; 
  • Inspected the rig prior to drilling;
  • Provided engineering and geological well construction supervising;
  • Coordinated well construction operations at the rig site;
  • Monitoring of regulation compliance.

Result:  four vertical and eight directional wells were drilled that flowed hydrocarbons at commercial rates.

Vietnam (continental shelf, supervising)

Providing the services of a drilling engineer, logistics specialist and geologist.

Result: two wells were drilled that flowed at commercial rates.

Projects in the Russian Federation

Sakhalin Island north-eastern shelf

We performed an estimation of the Kirinsky license area oil and gas potential using the data of petroleum system evolution numerical 3D modeling and 2D process-based sedimentary modeling of reservoir facies.

In order to reduce Kirinsky license prospecting-exploration risks, we predicted reservoir and seal distribution within the identified structures on the basis of process-based sedimentary modeling of reservoir facies, as well as trap filling with hydrocarbons on the basis of petroleum system modeling. In the process we identified four localized prospects.

Modeling was carried out using Russian Sedim and Mazay software.

This was the first time that 3D basin modeling and numerical sedimentary modeling had ever been carried out in the Kirinsky license area.

The findings were submitted to the client for use in prospecting and exploration planning for the Kirinsky license area.

West-Kamchatka license area

In order to define the further areas of exploration work, GeoGrid forecast the reservoir property distribution and lithological and facies composition and distribution on the basis of 3D numerical sedimentary and basin modeling, with due regard for data of land-borne drilling on Kamchatka Peninsula.

The work involved the techniques of 3D numerical sedimentary modeling, basin modeling and petroleum system modeling using Sedim and Mazay software of Russian origin.

We reproduced the depositional history of the synrift and clinoform complexes formation. The modeling results provided the basis for the lithological composition forecast and we offered a theoretical model for the reservoir property (porosity, permeability) distribution within the deposits. The obtained 3D static models were used to model the processes of petroleum generation, primary and secondary migration and accumulation. In the process of modeling basin subsidence, sediments burial and reservoir evolution, we assessed the impact of katagenetic processes on the change in the mineral forms of earth silica and the reservoir properties of siliciclastic deposits. The numerical modeling of the petroleum system evolution in the offshore areas of the West-Kamchatka basin included the data on the fields discovered in the Kolpakovsky trough. Stochastic modeling techniques were used to assess uncertainty of forecast P10, P50 and P90 petroleum resources.

The modeling results confirm the possibility that medium and major hydrocarbon accumulations can be formed within the study area. The main problems in assessing the oil-and-gas potential stem from the fact that G&G data is available only for individual areas of the license area, due to confidentiality considerations and inaccessibility of significant amounts of G&G data.

The 3D sedimentary basin modeling results helped investigate the clinoform complex structure and substantiate the existence of complex structural and sedimentary traps within the license area. Sand bodies with good reservoir properties are associated with the frontal part of the clinoform complex, while shale beds of this complex act as a good seals.

3D numerical modeling and the modeling of the petroleum system evolution at the West-Kamchatka license area in Eocene and Upper Miocene reservoirs made it possible to identify potential targets and quantify the probability of their filling with hydrocarbons.

Timan-Pechora oil-and-gas province

GeoGrid developed technology to model petroleum systems and identify prospects that allow geology risks to be reduced while prospecting and exploring for oil and gas, as well as improving exploration efficiency due to using 3D numerical modeling and petroleum system modeling.

The capabilities of the technology were tested and demonstrated using the example of Timan-Pechora oil-and-gas province (OGP) targets.

The modeling technique application results were used to build 3D models reflecting the processes of petroleum generation and migration, produce petroleum accumulation forecast maps, get model sensitivity analysis and geological risks assessments through stochastic modeling.

GeoGrid identified and defined 17 most promising oil and gas prospects and estimated their potential resources.

The findings were handed over to the client for their use in planning prospecting and exploration work within the unallocated mineral resources fund.

Vilyui oil-and-gas province

GeoGrid assessed the Vilyui OGP petroleum potential and localized promising areas using basin modeling and the comprehensive reprocessing and reinterpretation of historical G&G information. The work was performed in accordance with the multiparametric interpretation method using basin analogues. Thus, promising petroleum accumulation areas were identified through basin modeling and petroleum system evolution modeling.

Historic information obtained from Rosgeolfond was reprocessed, reinterpreted and digitized to use it with modern equipment and served as input data.

GeoGrid eventually identified 10 localized promising areas in terms of prospecting and exploration, and estimated expected resources and assessed the risks involved.

The findings were submitted to the client together with recommendations for using subsurface resources and Vilyui OGP licensing.

Barents Sea shelf

GeoGrid specialists constructed a regional basin model of the Barents Sea offshore area within Gazprom’s zone of interest using the results of advanced reprocessing, reinterpretation and velocity analysis of seismic data based on framework grid of seismic lines.

GeoGrid used seismic reinterpretation data, structural basin model, core laboratory test data and published information to perform the following scope of work:

  • Numerical process-based sedimentary modeling of the Mid-Jurassic (Bath-Callovian age), Upper-Jurassic and Neocomian depositional sequences. The modeling results enabled us to produce detailed structural maps and get an insight into the structure of depositional sequences. We also generated forecast maps of the distribution of potential reservoir strata.
  • Basin modeling. GeoGrid calibrated the sediments compaction laws and well-by-well thermal model. We established relationships that govern variation of porosity as function of the depth for the main lithotypes. Assessed the amplitude of Cenozoic erosion. Conducted 3D reconstruction of the history of subsidence and structural plan evolution and computed the thermal model taking into consideration the calibration results well by well. Then we modeled the processes of petroleum generation, migration and accumulation; calibrated the model by the discovered field reserves data; investigated the impact of the Upper Jurassic fluid seal quality on the petroleum accumulation distribution; assessed probable losses as a result of vertical migration along faults during Cenozoic erosion; generated maps of aggregate oil-and-gas generation, areas of petroleum accumulations, areas of active generation and migration paths. The modeling results served to assess the probability of the presence of accumulations in the Paleozoic reservoirs. In addition, we assessed the probability of Mid-Jurassic stratigraphic trap saturation; identified non-structural promising hydrocarbon traps; performed a tentative assessment of reservoir properties; assessed the accumulation’s resources and phase composition; and provided recommendations for further exploration efforts. This was performed using Russian Sedim and Mazay software.

Severo-Purovsky area

The following set of works was undertaken in the Severo-Purovsky subsoil area:

  • Seismic 3D data was processed in detail with the aim of improving the seismic record resolution, as well as increasing the signal/noise ratio. As a result of the processing, several versions of seismic data cubes were obtained, which were then submitted to the interpretation group for a comprehensive analysis.
  • Reinterpreted well data to update location of productive formation tops and bottoms;
  • Carried out an integrated analysis of well and seismic data enabling us to forecast the distribution of over-pressured zones and build 3D pore pressure cubes;
  • Performed structural interpretation, refined the study area geology for all the reflectors from the surface of the Paleozoic folded basement to the Upper Cretaceous;
  • Performed acoustic inversion and spectral decomposition; obtained and analyzed key seismic attributes;
  • Performed seismic and facies analysis; identified a number of structural and lithological traps in paleo-channels;
  • Estimated free gas and condensate reserves in the Low-Cretaceous deposits;
  • Identified prospects; delivered recommendations for further exploration activities including location of exploratory well and carrying out supplementary 3D seismic acquisitions.